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Mystery in Social Cognitive Development

Self recognition in mirror (24 mo) Helping others (14 mo)
[Amsterdam, 1972; Povinelli et al., 1996] [Warneken & Tomasello, 2006]

Reading others’ intention
(6 mo)
[Woodward, 1998; Gergely et al., 1995]

Imitation (0 mo) -

[Meltzoff & Moore, 1977] G}id theory of

[Heyes, 2001] il
-_development?

Emotion recognition/expression
(6 mo)
[Bridges 1930; Lewis, 2007]

Joint attention (12 mo)

[Butterworth & Jarrett, 1991]
[Moore et al., 1996; Brooks & Meltzoff, 2002]




Predictive Coding: Brain as Predictive Machine
[Friston et al., 2006; Friston, 2010; Clark, 201 3]

* The human brain tries to minimize prediction errors, which are calculated as difference
between top-down prediction and bottom-up sensation.
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Our Hypothesis: Cognitive Development Based on
Predictive Learning [Nagi, phil Trans B 2019]

* Infants acquire various coghnitive abilities ranging from non-social to social cognition
through learning to minimize prediction errors:

(a) Updating the internal model through own (b) Executing an action to alter sensory signals

sensorimotor experiences — Development of social abilities
— Development of self-relevant abilities
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What is a fundamental ability for cognitive development? Although many
researchers have been addressing this question, no shared understanding
has been acquired yet. We propose that predictive learning of sensorimotor sig-
nals plays a key role in early cognitive development. The human brain is
known to represent sensorimotor signals in a predictive manner, i.e. it attempts
to minimize prediction error between incoming sensory signals and top—down
prediction. We extend this view and suggest that two mechanisms for mini-
mizing prediction error lead to the development of cognitive abilities during
early infancy. The first mechanism is to update an immature predictor. The pre-
dictor must be trained through sensorimotor experiences because it does not
inherently have prediction ability. The second mechanism is to execute an
action anticipated by the predictor. Interacting with other individuals often
increases prediction error, which can be minimized by executing one’s own
action corresponding to others” action. Our experiments using robotic systems
replicated developmental dynamics observed in infants. The capabilities of
self—other cognition and goal-directed action were acquired based on the




Part I:
Social Cognitive Development Based on
Predictive Learning




Estimation of Others’ Action Goal by Infants

* 3-month-old infants can detect the goal- * Infants’ ability to predict the goal of others’
directed structure in others’ action only action develops in synchrony with the
when they were given own action experiences. improvement in their action production.
[Sommerville et al., 2005; Gerson & Woodward, 2014] [Kanakogi & Itakura, 201 1]
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Mirror Neuron (MN) and Mirror Neuron System (MNS)

Visual input
to MNS

[RIZZOIattI et al" I 996] Copyright © 2006 Nature Publishing Group

Nature Reviews | Neuroscience

. . . lacoboni & Dapretto, 2006
* Originally found in monkey’s premotor cortex [Rizzolatti et al., 1996,2001] : P :

* Discharge both:
— when executing an action

— when observing the same action performed by other individuals

* Understand others’ action and intention based on self’s motor representation




Predictive Learning for Development of MNS

* Predictive learning to integrate sensorimotor
signals enables a robot to recall own motor
experiences while observing others’ action as
well as to produce the action.

—> Mirror neuron system

* Predictor using a deep autoencoder:
— Action production: learns to reconstruct visual v,
' vision N\ N vicion | tactile U, and motor signals m.
L tactile tactile
—p Mmotor motor ___|

Predictor

(deep autoencoder)
[Copete, Nagai, & Asada, ICDL-EpiRob 201 6]



Predictive Learning for Development of MNS

* Predictive learning to integrate sensorimotor
signals enables a robot to recall own motor
experiences while observing others’ action as
well as to produce the action.

—> Mirror neuron system

* Predictor using a deep autoencoder:

— Action production: learns to reconstruct visual v,
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[Copete, Nagai, & Asada, ICDL-EpiRob 201 6]



Result |: Prediction of Observed Action

Predicted
image

InPUtIOUtPUt Slgnals Predicted image | Classification of prediction
* Vision: camera image (30 dim) |

 Tactile: on/off (3 dim)

* Motor: joint angles of shoulder and elbow (4 dim)

Correct goal

Incorrect goal
... for 30 steps

Assumption
* Shared viewpoint between self and other

No goal

[Copete, Nagai, & Asada, ICDL-EpiRob 201 6]



Result 2: Prediction Accuracy Improved by Motor Experience

With motor experience Without motor experience (only observation)
100 100
90 90
80 80 -
2 7 g 7 Correct goal
< 60 T o0
2 50 2 50
5 40 5 40 Incorrect goal
Y 2 2
20 20
10 12 No goal
i 120 180 120 180
Learning Iteration Learning Iterat|on
Reaching for left
0 .
4 Reaching for center
Reaching for right
PC2 6 4 2 0-2-4

PC1

[Copete, Nagai, & Asada, ICDL-EpiRob 201 6]



Two Theories for Helping Behaviors [paulus, 2014]

* Emotion-sharing theory
— Recognize other persons as intentional agents [Batson, 1991]

— Be motivated to help others based on empathic concern for
others’ needs [Davidov et al,, 2013]

— Self-other differentiation

* Goal-alignment theory

— Estimate others’ goal, but not their intention [Barresi & Moore, 1996]

— Take over others’ goal as if it were the infant’s own

— Undifferentiated self-other

[Warneken & Tomasello, 2006]



Computational Model for Emergence of Helping Behavior

* Helping behaviors emerge though the minimization of prediction error.
* The robot:

|) learns to acquire the predictor through own motor experiences,

2) calculates a prediction error while observing others’ action, and

3) executes a motor command to minimize the prediction error.

Proprioceptive prediction error
Interny] model
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[Baraglia, Nagai, & Asada, TCDS 201 6; Baraglia et al., JRR 2017]



Barag‘ hl\{agal,S 201 6; Baraglia et al., IJRR 2017]



Developmental Differentiation of Emotion in Infants

* Infants at birth have only excitation, which is later differentiated into pleasant and unpleasant
[Bridges, 1930].

* Six basic emotions as in adults appear only at about 12 months old [sroufe, 1979; Lewis, 1997].
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Predictive Learning for Emotion Development

* Emotion is perceived through inference of interoceptive and exteroceptive signals
[Seth et al, 2012].

* Predictive learning of multimodal signals enables a robot to estimate and imitate others’
emotion by putting themselves in others’ shoes.

—> Mirror neuron system .
4 Emotion Predictor

(multimodal DBN)

Emotion recognitiong

Visual Visual Auditory

(facial expression) (hand movement) (speech)

[Horii, Nagai, & Asada, Paladyn 2016; TCDS 2018]
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Robot that Learns to Imitate Human Emotion
[Horii, Nagai, & Asada, Paladyn 2016; TCDS_ 20, 8] @ .
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Result |: Developmental Differentiation of Emotion
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Result 2: Emotion Estimation through Mental Simulation

Emotion

2.0

1.0

0.0

2nd principal component

-2.0

-3.0

-3.5

o Happiness [ Neutral < Anger A Sadness

A O

i A A(@

A %AAADDAA D%A@%

O &0
Bo0

O

1st pl;incipal' compbnent

0 A o Happiness
O ]
a I
o 5 A oA0 0 Neutra
O [m] < Anger
<
6@ @ ~ Sadness
o (o] [m] .
¢ O s¢Transition
o Ground truth

0.5

1.0 1.5 20 2.5

1st principal component

3.0

Visual (face)

(hand)  Auditory

Only auditory input is given.

—> Imaginary visual signals
improved the accuracy of
emotion estimation.

[Horii, Nagai, & Asada, Paladyn 2016]




Part 2:
What Cause Developmental Disorders?




Autism Spectrum Disorder (ASD)

* Neurodevelopmental disorder characterized
by:
— Impaired social interaction and communication
— Repetitive behaviors and restricted interests

[Baron-Cohen, 1995; Charman et al., 1997; Mundy et al., 1986]

* Specific perceptual-cognitive style described as a

limited ability to understand global context I-II-IH Hy

— Weak central coherence [Happé & Frith, 2006] HH HH SSSS

— Local information processing bias H S <
[Behrmann et al., 2006; Jolliffe & Baron-Cohen, 1997] H HH H S S

[Behrmann et al., 2006]



TOjiSha- Ken kyu on ASD [Kumagaya, 20 14; Ayaya & Kumagaya, 2008]

* A research method by which people with R .
ASD investigates themselves from the %% i
first-person’s perspective il 5 9 :g%
— Heterogeneity of ASD ? ﬂsﬁg E’E T
— Subjective experiences / I8 ;j%g
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Ms. Satsuki Ayaya (Researcher, University of Tokyo)
* Diagnosed as Asperger syndrome in 2006

* Has been organizing regular meetings to conduct Tojisha-kenkyu since 201 |
* Member of my CREST project since 2016




Difficulty in Feeling Hunger in ASD

* Feeling of hunger is hard to be recognized and requires conscious process of selecting and
integrating proper sensory signals in ASD [Ayaya & Kumagaya, 2008].

h heayya “cold limbs
€aY"  [headed et
shoulder S i

mm‘ | obile

frustrated itchy

\/‘C‘h eStI SCGIP

| \

tightened1°"'18
acedsolt

unknown

chest sto_mwa_ch SR
pain ) '
-

feeling of

N

|. Equally perceive multimodal 2. Enhance hunger-relevant signals 3. Recognize hunger by
sensations while diminishing irrelevant signals integrating relevant signals

B 1 : limited to hunger |l : relevant to hunger sirrelevant to hunger | |: psychological




“Cognitive Mirroring’ as New Approach to Understanding ASD

* Artificial intelligent systems that make human cognitive processes observable

* Self-understanding and social-sharing as an important first step for assistance

=  System’s cognition=s
Observable & quantitative & e %)

Perception

@O HOJ

Computational

models
Neural networks,
‘; Bayesian models, etc.

~
~

L

Action

[Nagai, Seitai no Kagaku 2018]




Bayesian Account for ASD Based on Predictive Coding

* Perception based on Bayesian inference ¢ Hypotheses about ASD
(a) Perception p(x|u) is determined by the (b) Hypo-prior hypothesis [Pellicano & Burr, 2012]

integration of sensory observation
p(u|x) and prior expectation p(x)

Likelihood

p(xju) o< p(ulx)

—
1Y)
—

7 Typical

Sensory signal
(bottom-up)

Likelihood

Likelihood

(b) 7

Hypo-prior

Posterior (perception) (c) Reduced sensory noise hypothesis [Brock, 2012;
- Van de Cruys et al., 2014; Davis & Plaisted-Grant, 2015]

(c) 1

1
Reduced sensory noise 1!
1

Reduced
variance

(d) Imbalance between (b) and (c) [Lawson et al., 2014]



Bayesian-Based Predictive Coding

Output .
estimation y « S-CTRNN: Learn to estimate a
@ signal x;,; and its variance v, at
external input x(t : . .
hoput ) Contextlayer b ® [predicied mean _ predicdonof  the next time step t + 1 based on
wout : next input x'(t+1) .

o , O the current signal X; [Murata etal., 2013]
O (_X() wip Variance +K
E (1-x) estimation v
® wvar : * Parameters that characterize

, | predicted variance individual differences in cognitive

® capabilities:

— Sensitivity y to external signal x;

— Precision K of predicted variance v,

— etc.

[Philippsen & Nagai, ICDL-EpiRob 2018]



Result I: Influence of External Sensory Sensitivity y on Learning
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[Philippsen & Nagai, ICDL-EpiRob 2018]



Result 2: ASD Caused by Two Extremes in Predictive Learning
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[Philippsen & Nagai, ICDL-EpiRob 2018]




Ability of Representational Drawing in Children

by 6-years-old child by Nadia, autistic savant at age 5



Drawing by Human Children and Chimpanzees [saitw et al, 2014]

(c) Mark the Present Parts

Human Girl 2y2m Chimpanzee Popo

(d) Complete the Missing Parts
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S-CTRNN with Bayesian Inference

implicit input  explicit sensor
signal variance variance
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[Oliva, Philippsen & Nagai, under review; Philippsen & Nagai, under review]




Result: Influence of Hyper-/Hypo-prior on Predictive Drawing

1.0

FACE FACE
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HOUSE HOUSE
3o 6 déde @6k
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Qa j;s @ ci QB 33 &R ja ¢
(a) Hyper-prior (b) Normal prior (c) Hypo-prior

[Philippsen & Nagai, under review]



Simulator ofAtyplcaI Visual Perception i
[Qin et al., ICDL-EpiRob 2014; Nagai et al., JCSS 2015] >

(NHK, 2017.05.21)



Result I: High Contrast & Intensity Induced by Brightness
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N X (el

— Larger pupil size in ASD [Anderson & Colombo, 2009]

— Longer latency and reduced constriction amplitude in
pupillary light reflex [Daluwatte et al., 2013]

RETINA RAY OF LIGHT RETINA RAY OF LIGHT

Portion
of retina
that can
be seen

Portion
of retina
that can
be seen

through
undilated

pupil.

[Qin et al., ICDL-EpiRob 2014; Nagai et al., JCSS 2015] oo i | SO PP

through
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Result 2: No Color & Blurring Induced by Motion
ASD’s view | ﬁ

o
Ar %
A

g

Retinal view

— Reliance on peripheral vision, high amplitude of visual evoked or'. B Fovea

* Fine

* Potential physiological/neural causes

potentials in response to peripheral stimuli [Mottron et al., 2007; D . Color
Noris et al., 2012; Frey et al., 201 3] ~« No motion
Lo A | rfovea. W4
— Difficulty in integrating the foveal and peripheral information? : Peripheral

\.p. BN .
(cf. [Behrmann et al., 2006; Nakano et al., 2010]) “ation, Blurred
sond ' &ls * No color
* Motion

[Qin et al., ICDL-EpiRob 2014; Nagai et al., JCSS 2015]




Result 3: Dotted Noise Induced by Change in Motion & Sound

Original

* Potential physiological/neural causes

— Visual snow observed in migraine patients [Schankin et al., 2014]

— Atypical brain activities correlated with visual snow
(e.g., cortical spreading depression in visual cortex [Hadjikhani et al., 2001],
hyper-metabolism in lingual gyrus [Schankin et al., 2014])

— Similar brain activities in ASD?

[Qin et al., ICDL-EpiRob 2014; Nagai et al., JCSS 2015]



Improvement of Self-Understanding Using ASD Simulator
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Reduction of Stigma Through Experience of ASD’s Perception

[Suzuki et al., 2017; Tsujita et al., 2017]

* ASD simulator workshops for families with and caretakers of individuals with ASD
(50-200 participants x 20 times since Dec.2016)

— To promote mutual understanding between people with and without ASD

— To mitigate social stigma by experiencing ASD simulators

@ Control group A Experimental group

Pre-post score difference

Negative Calm Cognition  Behavior

Pre- Lecture  Experience of  Narrative Discussion Post-

questionnaire ASD simulator by ASD questionnaire Dimensions of stigmatized attitude
individuals







Cognitive Development Based on Predictive Coding

* Development of social cognition through E‘&‘:t -
prediction error minimization F S

Proprioceptive prediction error

— Updating the predictor through own

Interny] model

sensorimotor experiences (Pred¢or) Prediction
— Executing an action to alter sensory signals s
Exteroceptivelinteroceptive
prediction error Sensory
input
* Hypo- and hyper-prior might cause behavioral
and cognitive characteristics in ASD Posterior (perception)

—
)]
S—

7 Typical

!

— Hypo-prior: stronger sensitivity to sensory
input

1
|
. Sensory observation
i (bottom-up)

Likelihood

— Hyper-prior: poorer sensitivity to sensory
input




JST CREST “Cognitive Mirroring”

Kumagaya@U. of Tokyo
LITALICO Assistance for Disorders

* Interdisciplinary team involving

robotics, computer science, and
.o ©
tojisha-kenkyu L‘J

Assisting people with developmental
disorders in learning and working

— Tojisha-kenkyu: first person’s research
by which people with ASD investigates
their own cognition

Nagai@NICT] Cognitive Mirroring

(Period: 2016.12-2022.03)
(Director:Yukie Nagai)

Developing cognitive mirroring systems that
make cognitive processes observable

(Kumagaya@U- ofTokyo) Tojisha-Kenkyu (Yamashita@NCNP] Computational Modeling
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Computational
account

Investigating principles for cognition Developing computational neural
with/without disorders networks to reproduce cognition
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ABOUT PEOPLE CORE FACILITIES COLLABORATION RESEARCH EVENTS OUTREACH CAREERS ACCESS

Postdoctoral Fellow (Project Researcher) (Nagai Laboratory)

Yukie Nagai (IRCN Principal Investigator) lab ,which will be established in April 2019, has been invest b M (o Nts acquire various cognitive abilities by means of

computational approach and designing assistant systems for people with developmental disorders. / docs who will work in the fields of cognitive

Phil. Trans. R. Soc. B, 2019, doi: 10.1098/rstb.2018.0030).

S5E2H

Job title IRCN Postdoctoral Fellow (Project Researcher)
Starting Date June 1, 2019 or later (Negotiable)
Term The first contract will be ended on March 31, 2020. The contract is renewable on a fiscal year basis (from April 1 to March 31; every year) according

to research budget, research activity, and research achievements. Contract duration is until March 31, 2022.

Probationary period is 6 months from the date of arrival.
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