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Research Themes

Learning from Demonstration Explainable AI Intelligent Tutoring

Shared-Environment 
Human-Robot Collaboration

Life-Long Learning 
of Human Behavior

Learning to model the world 
we interact in





Human-in-the-loop artificial intelligence enables robot workers to 
make human collaborators safer, more effective, and more efficient.

Collaborative Human-Robot Interaction



So let’s jump right in!

𝜋𝜃



Robot Co-workers

Cages are being replaced by algorithms, sensors, and HRI



Robot Co-workers



Robots are the future!
…but it’s really hard to make them do what we want.



Task Execution



Robotics is Hard

Nobody knows everything

Even worse: HRI is multi-disciplinary



Task Execution



Markov Model Chart

NO YES

YES Markov Chain MDP

NO HMM POMDP

Do we have control over the state transitions? 
(Are we picking which actions are executed)

Are the states 
completely 
observable?



Difficulty of Human-Robot Collaboration
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Chart credit: Maayan Roth, “Markov Model for Multi-Agent Coordination”



Collaborative Task Execution



Collaborating
During Task Execution

Yikes :(



Collaborating
During Task Execution

Understanding
Task Structure

Modeling
Human Behavior



Sample Problem



Sample Problem
Terminology

A state is a representation of the world

An action is something that transitions you from one state to 
another (can also be a self-transition!)

A transition function T(s,a,s’) provides the probability that a 
particular action a taken in a particular state s will bring the 
system to state s’

A reward function R(s, a) provides the value of taking a 
particular action a in state s



Sample Policy 𝜋: 𝑆 → 𝐴



State Representation is Critical



Motion Planning & Optimal Control
Optimal Control: Finding the best control policy for a desired goal

Closed-Loop Solutions Open-Loop Solution

𝑢 = 𝑢(𝑥)
“Global Method”: Gives action at all states

Very expensive to compute

𝑢 = 𝑢(𝑡)
“Local Method”: Gives action at relevant states

Usable in high dimensions



Trajectory Optimization:
Problem Statement

• Trajectory 𝜉: 𝑡 ∈ 0, 𝑇 → 𝐶 Maps time to configurations

• Objective Functional 𝑈: Ξ → ℝ+ Maps trajectories to scalars

• The objective 𝑈 encodes traits we want our path to have
• Path length
• Efficiency
• Obstacle avoidance
• Legibility
• Uncertainty reduction
• Human comfort

Goal: Leverage the benefits of randomized sampling with 
asymptotic optimality

Set of possible 
trajectories



Problem Specification: Spaces

World Space W(ℝ^3)
Configuration Space 

C(#𝐷𝑜𝐹)
Trajectory Space 

Ξ(∞ 𝑑𝑖𝑚)

Robot pose in World 
Space (set of points)

Single point in 
Configuration Space

Trajectory through 
Configuration Space 

(set of points)

Single point in 
Trajectory Space



Problem Specification: Optimization

Trajectory Optimization seeks to find an 
optimal trajectory 𝜉∗:

𝜉∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝜉∈Ξ 𝑈[𝜉]

s.t. 𝜉 0 = 𝑞𝑠

𝜉 𝑇 = 𝑞𝑔

…(any other constraints we want)



Problem Specification: Optimization

Want to optimize 𝜉 to a global minimum of our objective U

=> Usually too hard!

Instead, optimize 𝜉 to a local minimum of our objective U

=> If the solution is bad, resample 𝝃 and try again



Donald Michie’s criteria for Machine Learning (ML)

Weak criterion:

ML occurs whenever a system generates an updated basis building 

on sample data for improving its performance on subsequent data.

Strong criterion:

Weak criterion + ability of system to communicate 

internal updates in explicit symbolic form.

Ultra-strong criterion:

Strong criterion + communication of updates must be operationally effective 

(i.e. user is required to understand updates and consequences should be drawn from it).



Where is this?



Relating Different Types of Systems

Factory

Factory

Factory

(Halogen lights, fixtures, 
car chassis, …)

f(x)=y

Opaque

Comprehensible

Interpretable



Let’s Make a Furniture-Building Collaborative Robot



Let’s unpack this problem…



Consider the following challenge

• How do we get a robot 
to write for us?

• What’s the best way to 
encode the actions the 
robot has to perform?

• How can we teach the 
robot to draw a single 
letter properly?



Painstakingly Program Each Motion

• We can code each motion one at time, giving the motors 
set amounts to move at each step of the process

• This is brittle! What if the robot isn’t in the exact same spot 
as it was when we programmed it?



Add hand-written rules and logic!

We can create a 
bunch of rules to 

make it more robust 
to variations in the 

environment!

What if I miss a rule?



Learning from Demonstration



Keyframe
Demonstration

Trajectory 
Demonstration

Hybrid 
Demonstration

Trajectories and keyframes for kinesthetic teaching: A human-robot interaction perspective
B Akgun, M Cakmak, JW Yoo, AL Thomaz



Learning to Draw “P” from Examples:

Continuous 
trajectories in 2D

Data converted 
to keyframes

Clustering of keyframes
and the sequential 
pose distributions

Learned model 
trajectory



Dealing with variations in speed

We can turn trajectories into sequences of letters

(Comparisons are a lot easier this way!)



Did the robot capture my intent?



Robust Robot Learning from Demonstration 
and Skill Repair Using Conceptual Constraints

[IROS 18]



Skills learned from demonstrations can be brittle due to the 

limited information content provided by trajectory demonstrations.

For example, a learned skill may only execute correctly for 

specific environment or object used during demonstration.

Learning implied constraints (e.g., cups need to be carried upright) from 

demonstrations can require a prohibitively large number of trajectories



Trajectory Demonstration

Intrinsically precise
behavior specification

Narrow coverage
of skill per example

Obstacle

No way to know if this path is okay or not!

G
S

“Pick up the glass of water”
“Move it in an arc over the table to the bowl”
“But don’t carry it over the laptop if it is full”
“Also make sure that your gripper stays closed”
“But not tight enough to break the glass”

…

Narration

Difficult to provide
precise details

Can easily specify
broadly applicable 
concepts

Key Insights



Concept Constrained Learning from Demonstration

CC-LfD Algorithm

Augments Keyframe-based LfD by 

incorporating narrated high level 

constraints into keyframe models. 

Increase Skill 
Robustness

Improves execution 
under conditions not 
seen during training

Reduce Training 
Requirements

Learns more flexible, 
generalizable 

representations 
with less data

Increase Resilience 
to Poor Training

Avoids skill failures 
even when trained 
with sub-optimal 
demonstrations

Improve and Repair 
Existing Skills

Enables one-shot skill 
repair to improve 

existing skills with a 
single new example

Conceptual Constraint

A physically grounded or 

abstract behavioral restriction 

encoded as a Boolean function

CC-LfD Allows You To:



CC-LfD :: Algorithm Overview

1

Record w/ Narration, & Align

2

Cluster & Model Keyframes

3

Rejection Sampling

4

Remodel & Reconstruct



Unconstrained Skill Reconstruction from Keyframed Trajectories

Skill Reconstruction from Keyframed Trajectories with CC-LfD Narration



One-shot Skill Repair

Broken 
Skill

Fixed 
Skill
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“POURING TASK” ROBOT PERFORMANCE AND ONE-SHOT SKILL REPAIR

Just ONE narrated 
example fixes the skill 

with CC-LfD!

After three noisy (but 
valid) examples, the robot 
cannot perform the task at 

all

Traditional LfD

CC-LfD

More data doesn’t 
always help!



Moving forward to Joint Task Execution 
(Teamwork)



Leader / Follower Equal Partners

Teaming Paradigms



How can we enable collaborative robots that may 

lack either authority or capability

to provide utility to their co-workers?



Supportive Behaviors

Actions that facilitate more rapidly satisfiable 
or less difficult task solutions.



Hierarchical Task Structure
IKEA Chair

Assemble 
Chair

Orient 
Rear 

Frame

Get Frame
Place 

Frame in 
Workspace

Attach 
Supports

Attach Left 
Support

Get Peg
Place 

Peg(Left 
Frame)

Get 
Support

Place 
Support(Lef

t Frame)

Add Left 
Support 

HW

Get nut
Place 

Nut(Left 
support)

Get bolt
Place 

bolt(Left 
rear frame)

Screw 
bolt(left 

rear frame)

Attach 
Right 

Support

Get Peg
Place 

Peg(Right 
Frame)

Get 
Support

Place 
Support(Rig
ht Frame)

Add Right 
Support 

HW

Get nut
Place 

Nut(Right 
support)

Get bolt
Place 

bolt(Right 
rear frame)

Screw 
bolt(Right 

rear frame)

Add Seat

Get Seat Place Seat

Attach 
Front 
Frame

Place Pegs

Place left 
peg

Get peg
Place 

peg(left 
support)

Place right 
peg

Get peg
Place 

peg(right 
support)

Mount

Get Front 
Frame

Place Front 
Frame(Sup

ports)



Collaborative robots need to recognize human activities

• Nearly all collaboration models depend on some form of 

activity recognition

• Collaboration imposes real-time constraints on classifier 

performance and tolerance to partial trajectories



Interpretable Models for Fast Activity Recognition and 
Anomaly Explanation During Collaborative Robotics Tasks

[ICRA 17]



Common Activity Classifier Pipeline

Feature Extraction
Keyframe Clustering 

(Usually KNN)
Point to Keyframe 

Classifier (Usually SVM)
HMM trained on 

keyframe sequences

Feature Extraction Keyframe Classification
HMM Likelihood 

Evaluation 
(Forward Algorithm)

Choose model with 
greatest posterior 

probability

Training

Testing

• P. Koniusz, A. Cherian, and F. Porikli, “Tensor representations via kernel linearization for action recognition from 3d skeletons.”
• Gori, J. Aggarwal, L. Matthies, and M. Ryoo, “Multitype activity recognition in robot-centric scenarios,” 
• E. Cippitelli, S. Gasparrini, E. Gambi, and S. Spinsante, “A human activity recognition system using skeleton data from rgbd sensors.” 
• L. Xia, C. Chen, and J. Aggarwal, “View invariant human action recognition using histograms of 3d joints.”



Rapid Activity Prediction Through 
Object-oriented Regression (RAPTOR)

Feature 
Extraction

Temporal 
Segmentation

Feature-wise 
Segmentation

Local Model 
Training

Ensemble 
Weight 

Learning

A highly parallel ensemble classifier that is 
resilient to temporal variations



Activity Model Training Pipeline

Feature Extraction
Temporal 

Segmentation
Feature-wise 
Segmentation

Local Model Training
Ensemble Weight 

Learning

Kinect Skeletal Joints VICON Markers

[Timestep x Feature] Matrix

Learned Feature Extractor



Activity Model Training Pipeline

Feature Extraction
Temporal 

Segmentation
Feature-wise 
Segmentation

Local Model Training
Ensemble Weight 

Learning

Time
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Activity Model Training Pipeline

Feature Extraction
Temporal 

Segmentation
Feature-wise 
Segmentation

Local Model Training
Ensemble Weight 

Learning

Time
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Activity Model Training Pipeline

Feature Extraction
Temporal 

Segmentation
Feature-wise 
Segmentation

Local Model Training
Ensemble Weight 

Learning

Time

D
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100%0%

Two Temporal Segment Parameters: Width and Stride



Activity Model Training Pipeline

Feature Extraction
Temporal 

Segmentation
Feature-wise 
Segmentation

Local Model Training
Ensemble Weight 

Learning

Time
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{Width=0.2 , Stride=1.}

1 2 3 4 5



Activity Model Training Pipeline

Feature Extraction
Temporal 

Segmentation
Feature-wise 
Segmentation

Local Model Training
Ensemble Weight 

Learning

Time

D
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100%0%

{Width=0.2 , Stride=.5}

1 3 5 7 9

2 4 6 8



Activity Model Training Pipeline

Feature Extraction
Temporal 

Segmentation
Feature-wise 
Segmentation

Local Model Training
Ensemble Weight 

Learning

Object Map: 
Dictionary that maps IDs to sets of column indices

E.g., {“Hands”: [0,1,2,5,6,7]}
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Activity Model Training Pipeline

Feature Extraction
Temporal 

Segmentation
Feature-wise 
Segmentation

Local Model Training
Ensemble Weight 

Learning

D
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p
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Within each temporal segment:
• Isolate columns of each demonstration 

trajectory according to (pre-defined) object map

• Create local model for each object



Activity Model Training Pipeline

Feature Extraction
Temporal 

Segmentation
Feature-wise 
Segmentation

Local Model Training
Ensemble Weight 

Learning

Within each temporal-object segment:

• Ignore temporal information for each data point

• Treat as general pattern recognition problem

• Model the resulting distribution using a GMM

Result: An activity classifier ensemble across objects and time!
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Activity Model Training Pipeline

Feature Extraction
Temporal 

Segmentation
Feature-wise 
Segmentation

Local Model Training
Ensemble Weight 

Learning

1 3
0 2 4

…
Object 
GMMs…

Object 
GMMs

1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0

Need to find the most discriminative Object GMMs per time segment



Activity Model Training Pipeline

Feature Extraction
Temporal 

Segmentation
Feature-wise 
Segmentation

Local Model Training
Ensemble Weight 

Learning

1 3
0 2 4

…
Object 
GMMs

1.0 1.0 1.0 1.0

Need to find the most discriminative Object GMMs per time segment

Random Forest Classifier



Activity Model Training Pipeline

Feature Extraction
Temporal 

Segmentation
Feature-wise 
Segmentation

Local Model Training
Ensemble Weight 

Learning

Need to find the most discriminative Object GMMs per time segment

Target Class
Demonstrations

Off-Target Class
Demonstrations

Random Forest Classifier

Likelihood 
Vector

Trajectories



Activity Model Training Pipeline

Feature Extraction
Temporal 

Segmentation
Feature-wise 
Segmentation

Local Model Training
Ensemble Weight 

Learning

• Choose top-N most discriminative features from the Random Forest classifier
• Weight each GMM proportional to its discriminative power

1 3
0 2 4

…
Object 
GMMs

0.0 .5 0.22 0.28



Activity Model Training Pipeline

Feature Extraction
Temporal 

Segmentation
Feature-wise 
Segmentation

Local Model Training
Ensemble Weight 

Learning

1 3
0 2 4

…
Object 
GMMs

0.0 .5 0.22 0.28

Feature Extraction
Temporal 

Segmentation
Feature-wise 
Segmentation

Local Model Training
Ensemble Weight 

Learning

Result: Trained Highly Parallel Ensemble 
Learner with Temporal/Object-specific 

sensitivity

• Choose top-N most discriminative object-based classifiers
• Weight each object proportionally to its discriminative power



Results: Three Datasets

UTKinect Automotive Final Assembly Sealant Application

• UTKinect publicly available benchmark (Kinect Joints)

• Dynamic Actor Industrial Manufacturing Task (Joint positions)

• Static Actor Industrial Manufacturing Task (Joint positions)



Recognition Results: UTKinect-Action3D



Results: Online Prediction



Interpretability: Explaining Classifications

Asking a “carry” classifier about a “walk” trajectory:

“In the middle and end of the trajectory, the left 
hand and right hand features were very poorly 
matched to my template.” 

Key Insight:
• Apply outlier detection methods across internal activity classifiers
• Use outliers or lack thereof to explain issues across time and objects



Support task network

Associating supportive behaviors with subgoals

Explicitly learned from demonstration during task execution

Support policy can be propagated to higher-level task nodes

Hayes & Scassellati, “Online Development of Assistive Robot Behaviors for Collaborative Manipulation and Human-Robot Teamwork”, Machine Learning for Interactive Systems, AAAI 2014

Supportive Behaviors 
by Demonstration



Context-sensitive Supportive Behavior Policies



Supportive Behaviors by Demonstration

Issues

• Only learns before deployment

• Fixed behavior, reactive-only during execution

• Difficult to generalize across tasks

What happens if you’re not the one 
programming the support policy?



Learning from Demonstration
Breaks Down in Team Scenarios!

Traditional LfD is optimal if the reference demonstrations are “Expert” demonstrations.

…but execution happens in isolation!

Expert demonstrations are not always the most effective teaching strategy.

Sometimes it’s better to learn the landscape of 

the problem than to see optimal demonstrations

Properly crafted ‘imperfect’ demonstrations can better 

communicate information about the objective.

Leading to one all-important question…



Human figures out how and when
the robot can be helpful

Quickly enables useful, helpful actions.

Does not scale with task count!

Requires human expert

Robot figures out how and when
it can be helpful

Allows for novel behaviors to be discovered

Enables deeper task comprehension and action 
understanding

Can we do better than learning from examples?

Demonstration-based
Methods

Goal-driven
Methods





Autonomously Generating Supportive Behaviors:
A Task and Motion Planning Approach

Perspective Taking Symbolic planning Motion planning

Autonomously Generated Supportive Behaviors



1. Propose alternative 
environments
- Change one thing about the 
environment

2. Evaluate if they facilitate the 
leader’s task/motion planning
- Simulate policy execution(s) from 
leader’s perspective

3. Compute cost of creating 
target environment
- Simulate support agent’s plan 
execution

4. Choose environment that 
maximizes [benefit – cost] 
- Execute supportive behavior plan

Supportive Behavior Pipeline: Intuition

Propose alternate environments

Evaluate Impacts 
on Leader

Evaluate Cost of 
Alterations

Manipulate scene to create best 
environment candidate



Plan Evaluation

Choose the support policy (ξ ∈ Ξ) that minimizes the 
expected execution cost of the leader’s policy (π ∈ Π) to 
solve the TAMP problem T from the current state (sc)

• Cost estimate must account for 

• Resource conflicts (shared utilization/demand)

• Spatial constraints (support agent’s avoidance of lead)



Plan Evaluation

Choose the support policy (ξ ∈ Ξ) that minimizes the 
expected execution cost of the leader’s policy (π ∈ Π) to 
solve the TAMP problem T from the current state (sc)

• Cost estimate must account for 

• Resource conflicts (shared utilization/demand)

• Spatial constraints (support agent’s avoidance of lead)

Weighting function makes a 
big difference!



Weighting functions: 
Uniform, Greedy

Only the best-known solution is worth planning against

Min
duration

= 1

Consider all known solutions equivalently likely and important



Weighting functions: 
Uniform



Weighting functions:
Optimality-Proportional

Weight plans proportional to their cost vs. the best-known solution

p

p=2

Plan 
Weight

Plan Duration : Best Known Plan Duration



Weighting functions: 
Error Mitigation

f(π)

αwπ

Plans more optimal than some cutoff ε are treated normally, per f.

Suboptimal plans are negatively weighted, encouraging 
active mitigation behavior from the supportive robot.

α <
1

max
𝜋

𝑤𝜋
is a normalization term to avoid harm due to plan overlap



Weighting functions: 
Error Mitigation



Limitations

• Short forward lookahead (<10 seconds)

• Sampling problem is incredibly difficult

• Pushes some of the same problems that LfD has into the sampling mechanism

• A priori knowledge of human policy space is necessary

• This is coordination, not planning!



The Promise of Collaborative Robots



The Reality of Mismatched Expectations





Shared Expectations are Critical for Teamwork

In close human-robot collaboration…

• Human must be able to plan around 
expected robot behaviors

• Understanding failure modes and 
policies are central to ensuring safe 
interaction and managing risk

Fluent teaming requires communication…

• When there’s no prior knowledge
• When expectations are violated
• When there is joint action



Establishing Shared Expectations

Collaborative Planning
[Milliez et al. 2016]

State Disambiguation
[Wang et al. 2016]

Short Term Long Term

Role-based Feedback
[St. Clair et al. 2016]

Coordination Graphs
[Kalech 2010]

Policy Dictation
[Johnson et al. 2006]

Legible Motion
[Dragan et al. 2013]

Hierarchical Task Models
[Hayes et al. 2016]

Cross-training
[Nikolaidis et al. 2013]



Semantics for Policy Transfer

Under what conditions 
will you drop the bar?



Semantics for Policy Transfer

Under what conditions 
will you drop the bar?



Semantics for Policy Transfer

I will drop the bar when the world is in 
the blue region of state space:



Semantics for Policy Transfer



Semantics for Policy Transfer



12.4827
5.12893
1.12419
0
0
1
3.62242
-40.241
…

15
7.125
1.12419
0
0
1
-8.1219
-40
…

12.4827
8.51422
1.12419
0
1
0
3.62242
-40.241
…

, , …

I will drop the bar when the world is 
in the blue region of state space:



I will drop the bar when the world is 
in the blue region of state space:

12.4827
5.12893
1.12419
0
0
1
3.62242
-40.241
…

15
7.125
1.12419
0
0
1
-8.1219
-40
…

12.4827
8.51422
1.12419
0
1
0
3.62242
-40.241
…

, , …

State space is too obscure to directly articulate



State of the Art

int *detect_gear = &INPUT1; 
int *gear_x = &INPUT2; 

if (*detect_gear == 1 && *gear_x <= 10 && *gear_x >= 8) {
pick_gear(gear_x);

}

???



Reasonable question:

“Why didn’t you inspect the gear?”

Interpretable answer:

“My camera didn’t see a gear. I inspect 
the gear when it is less than 0.3m 
from the conveyor belt center and it 
has been placed by the gantry.”

Natural Interaction

Fault Diagnosis

Policy Explanation

Root Cause Analysis

“My camera didn’t see a gear. I inspect 
the gear when it is less than 0.3m 
from the conveyor belt center and it 
has been placed by the gantry.”



Making Control Systems More Interpretable

Approach:

1. Attach a smart debugger to monitor controller execution

2. Build a graphical model from observations

3. Use specialized algorithms to map queries to state regions

4. Collect relevant state region attributes

5. Minimally summarize relevant state regions with attributes

6. Communicate query response

Model Building

Query Analysis

Response Generation



Concept Representations

Concept library: generic state classifiers mapped to semantic 
templates that identify whether a state fulfills a given criteria

Set of Boolean classifiers: State → {True, False}

• Spatial concepts (e.g., “A is on top of B”)

• Domain-specific concepts (e.g., “Widget paint is drying”)

• Agent-specific concepts (e.g., “Camera is powered”)

on_top(A,B) camera_powered



Relevant Question Templates

When will you do {action}?



Relevant Question Templates

Why didn’t you do {action}?



Relevant Question Templates

What will you do when {conditions}?



Language Mapping: Model to Response

on_top(A,B) camera_powered

Recall: Concept library provides dictionary of 
classifiers that cover state regions



Using Concepts to Describe State Regions

We perform state-to-language mapping by applying 

a Boolean algebra over the space of concepts

This reduces concept selection to a set cover problem over state regions

Disjunctive normal form (DNF) formulae enable coverage over arbitrary 

geometric state space regions via intersections and unions of concepts

Templates provide a mapping from DNF → natural language



Query Response Process

When do 
you inspect 
the gear?

Find states where 
action {inspect(gear)} 
is most likely action

Detected_gear /\ at(conveyor_belt) 

Find concept mapping 
that covers the 
indicated states

Convert to natural language

I’ll inspect the gear 
when I’ve detected 

a gear and I’m at 
the conveyor belt.

Detected_gear

at(conveyor_belt) 



Interpretable and comprehensible systems are lacking in the ability to formulate 

their line of reasoning, using human-understandable features of input data.

Interpretable and comprehensible models enable explanations 

of decisions, but do not yield explanations themselves!

How else can we establish shared expectations and verify that intent was captured?

Have the robot use its model to teach a human!

Explainable AI Needs Reasoning!



Improving Human-Robot Collaboration through 
Autonomous Explanation-based Reward Coaching

[HRI 19]

Nominated for Best Technical Paper Award



We spend a lot of time making robots good at things

We’re pretty good at this transition

We’re less good at this transition

But how do we use this to make others proficient too?



Learning from experience can be expensive



Motivating Questions

How do we turn a capable robot into a competent instructor?

Can a robot use its own understanding of the world to figure out yours?

Given this understanding, can it issue corrective guidance you’ll follow?

Can we do all of this within a general framework?



Key Assumption:
Humans are goal directed, generally rational agents

Confusing behavior indicates a difference in domain understandingUnexpected policy reward function



Humans are agents maximizing their expected reward



Reward Augmentation and Repair through Explanation

Optimal Path Human Path

100



Coaching as Partially Observable Markov Decision Process

Belief State 
Of Human 

Observation by coach

Action by coach

Reward

Action can be task-specific physical action 
and reward repair-specific social action 

Robot is coaching while 
collaborating



RARE: An Intuition

Estimate the collaborator’s reward function by 
figuring out which policy they’re following

Assuming policies are optimal w.r.t. the 
reward function that produced them

Track belief over reward functions
Using latent Boolean state variables to 
indicate the collaborator’s knowledge 

about a particular reward.



State Augmentation to Extend Belief and Action Space

Compound State Vector:

World variables
Comprehension variables



Repairing a Domain Misunderstanding

Extend robot’s action space
Include communicative actions for 

revealing reward components.



10010010

Reward Augmentation through Repair and Explanation



10010010

Reward Augmentation through Repair and Explanation



10010010

Reward Augmentation through Repair and Explanation



10010010

Need to 
communicate this 

reward before they 
finish!

Reward Augmentation through Repair and Explanation



10010010

Need to 
communicate this 

reward before they 
finish!

Option 1: “If you do that you won’t get the best reward”

Indicate suboptimality of an action to encourage exploration

Reward Augmentation through Repair and Explanation



10010010

Need to 
communicate this 

reward before they 
finish!

Option 2: “If you do that you won’t get the best reward. 
There’s a better reward in the top right corner.”

Justify the advice by providing a description of the reward’s location

Reward Augmentation through Repair and Explanation



100

Reward Augmentation through Repair and Explanation



User Study



Realtime Color Sudoku:

Each player gets 3 rows to fill: 
near to far, right to left.

There are no turns: 
play whenever you’re ready

A really hard game for humans



Realtime Color Sudoku: 
The Rules

No color may appear twice on 
the same row

No color may border itself



Between-subjects experiment (n=26)

Justification:

Players about to make a
mistake were told about the
reward inferred they were
missing.

Control:

Players about to make a
mistake were told that they
cannot make that move or
they’ll fail the game.

No Interruption:

Players completed the game
without mistakes.



Subjective Hypotheses
Subjective Hypotheses

H1: Participants will find the robot more helpful and useful 
when it explains why a failure may occur

H2: Participants will find the robot to be more intelligent 
when providing justification for its advice

H3: Participants will find the robot more sociable when it 
provides justifications for its failure mitigation



H1: Participants will find the robot more helpful and useful 
when it explains why a failure may occur

Subjective Results: Helpfulness

p < 0.05 p < 0.05



Subjective Results: Intelligence

H2: Participants will find the robot to be more intelligent when 
it provides justification for its advice

N.S.p < 0.05

N.S. 
p<0.08



Subjective Hypotheses
Subjective Hypotheses

H1: Participants will find the robot more helpful and useful 
when it explains why a failure may occur

H2: Participants will find the robot to be more intelligent 
when coaches them

H3: Participants will find the robot more sociable when it 
provides justifications for its failure mitigation



Subjective Hypotheses
Objective Hypothesis

H1: Participants will complete the game faster when 
provided with justification

But we couldn’t test it.

Because most participants didn’t even listen to the 
control condition’s advice without justification.

Justification: 80%
Control: 20%

Game Completion Rate:



Issues and Future Work

Comprehension variables for each 
reward causes the state space to 
explode combinatorially… but 
rewards are rarely independent!

Justification matters… 

but why?



Summary

We developed...
Reward Augmentation and Repair through Explanation

framework for using a competent agent to coach others

We evaluated…
Challenging collaborative cognitive game with a human and robot

We found…
Control condition: Hardly anyone followed the robot’s advice! 

Justification condition: Nearly everyone followed the robot’s advice!

We showed…
RARE makes robots more useful, helpful, and intelligent coaches.

Justification is essential for effective knowledge transfer!



JustificationControl
“Sawyer wasn’t forceful enough 

and was not giving me the 
reasons why the move was 

wrong. So I couldn’t trust him”

“Response looked like hard 
coded and I did not find the 

reason to think that Sawyer was 
addressing to me”

“I did not believe it as it did not 
give details regarding the wrong 

step”

Skeptical of Sawyer for not
giving justification

More positive user experience

“He was … telling me why my move 
was not right even though it was the 

right move. I was able to trust him 
easily when he gave the reasons”

“I learnt to think of moves ahead 
when Sawyer helped me once 

with the game.”

“Sawyer’s input made me 
question my understanding of the 

game”
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